
 ReqD Notes
Software travelogue

Oct 2, 1990

In order to present a compatible network interface to the accelerator Vax
computers, extensive changes are being made in the Local Station software.
The Vax assumes the use of a word-size node number, whereas the local
station software has always used a byte-size node number. This assumption
shows up in numerous parts of the software, and it even affects the page
applications as well, as many of them allow input of a node number as a two
hex digit field. Support for short idents must be retired, since there is no room
for a word size node number in a short ident.

A key module in the system that is severely affected by this change is ReqD.
This is the routine that a user program calls to make a data request and also
the one which supports the data server request, all using the Classic protocol
that was designed in 1980 and has evolved somewhat in recent years. This
module was written in a style that has since been abandoned, and revisiting
the code requires a rewrite in conform to more recently established practices.
The previous style involved extensive use of registers with long-term
significance, thus avoiding the creation of a local stack frame to contain local
variables. It made the program logic extremely difficult to read. Its main
virtue has been that it worked. In rewriting this code, a stack frame will be
used and the practice of using registers whose significance lasts over pages of
code will be resisted. Furthermore, the registers (other than D0-D1/A0-A1)
will be preserved, thus making it compatible with most hi level language
compiler register usage conventions.

The main purpose of these notes is to describe in some detail what the code
does for internal documentation purposes. Its use is expected to be limited,
however, as there is long term interest in replacing the Classic protocol
support with the support for the D0 protocol, as the latter protocol is a logical
extension of the Classic protocol and removes many of the limitations of that
original data request protocol. The actual retiring of the Classic protocol is not
expected for some time, however, as it will affect a number of other users of
the local stations from several other platforms. Those users will need to adapt
to use of the D0 protocol first. Also, the data server support by the local station
will have to be given the D0 protocol before it can supplant the Classic
protocol.

Overview
The routine ReqData is called by a user program to initiate a data request.

The calling sequence is as follows:

Procedure ReqData(list: Byte; freq: Byte;

ReqD Notes Oct 2, 1990 page 2
nIdents: Integer; VAR idents: Integer);

The list is a request-id chosen by the caller that is used to identify the
request in the subsequent call to retrieve the data and to cancel the request.
Values in the range 0–13 are allowed, depending upon the structure of the
LISTP system table; it may be modified to extend the range somewhat. See
more on this later.

The freq byte is actually a period count of 15 Hz cycles to specify a repetitive
request. Zero means a one-shot request. The maximum value of 255 is
therefore about 17 seconds.

The number of listypes, nLtypes, in the range 1–15, specifies the length of the
listype array, specified by listypes. For each listype and associated #bytes
value, the array of idents is processed to produce the resultant answer data.
This means that the listypes must be ident-compatible; i.e., they all must use
the same ident type. Thus, it is not possible to combine a request for analog
channel reading data with memory data, for example, in a single data request.
(This is one of the limitations that the D0 protocol removes.) On the other
hand, one may ask for readings, settings, nominals and tolerances for the
same set of analog channels quite efficiently.

The number of idents in the array idents is given by nIdents. The hi nibble
is used to hold the length of each ident. For example, an analog channel ident
is composed of two words, the node# and the channel index, so the ident
length in that case is 4 bytes. If the ident length is given as zero, the system
assumes a default value. (The current default value is that for a short ident,
but that will be changed soon to the value for a long ident.) In the future, the
ident length may be required to be specified to open the door to alternate
forms of idents for a given listype, such as using a name, for example. Of
course, the lengths supported would have to differ to be distinguishable.

Since each ident carries within it a node#, one may make a request for data
that refers to a number of different nodes, including the local node. The
support software separates out the local idents from the external ones and
issues a network request for the external ones. All this use of the network is
made transparent to the user. S/he only has to issue the following call to
collect the answers:

Procedure Collect(list: Byte; VAR status: Integer;

VAR answers: Integer);

The list number is the same small value used in the call to ReqData. An

ReqD Notes Oct 2, 1990 page 3
answer data is specified by the order of the request. The data for all the idents
of each listype is separately padded to an even #bytes, in case both the #idents
and the #bytes requested/ident were odd.

The system monitors the arrival of external answer fragments that are
received from each external node participating in the request. If a node is
tardy in returning the answer data, the Collect routine attempts to await the
return of that node’s data using a time-out of about 50 msec past the start of
the cycle, after which it returns an error status of either 7 or 8. The value of 8
is used if no answer fragment has been received from that node since the
request was initialized and 7 otherwise. If repetitive calls to Collect are
made, and the tardiness is persistent over 2 seconds, the system reissues the
data request to that node, hopeful that the node will revive and begin
participation in the request.

To cancel a data request, use the following call:

Procedure Delist(list: Byte);

Again, the list argument is the same small value used in the ReqData call.
If the request included external nodes, then a cancel message is sent to those
nodes to cause them to cease delivery of answer fragments.

Internal list# logic
The LISTP table maintains a record of list#s in use, and it provides a

means of avoiding reuse of the same list# in a data request for a period of
time after a request has been cancelled. This is to prevent misinterpretation of
answers to a new request issued immediately following a cancel of a previous
request.

The LISTP table is divided into a “short set” and a “main set” of entries. The
short set is indexed by small values (currently in the range 0–13 as noted
above). A short set entry contains a “full list#” that is allocated from the main
set. The main set is indexed by a full list#. Its entry contains a pointer to the
request memory block (allocated from dynamic memory) that supports the
data request while it is active. By maintaining a record of the last-used main
set entry and a usage count for each main set entry, and by including some
bits of the usage counter in the allocated list#, a newly-freed list# will not be
reused for a long time.

It is important that a data request does not use the same list# as one which is
already in use. The above LISTP logic can provide such service, but the user
interface calls do not allow it. Fortunately, the only data requesting programs

ReqD Notes Oct 2, 1990 page 4
initialized and which accept that full list# in the Collect and Delist calls.
The short set was designed to retain use of the present interface routines but
still prevent the above misinterpretation of answers to new requests.

Delist
Call GetListN to get the full list# associated with the small list#

argument. If it is valid, cancel the request by calling Delist1, and clear the
short set entry by calling SetListN; otherwise, simply return.

Delist1
Call GetListP to get a pointer to the request memory block. Clear the

main set entry by calling SetListP. Delete the request from the chain of
active data requests. Capture the pointers to any external request block and/or
a total answers block. Release the allocated request block memory. If there was
an external request block, queue a cancel message to the network using the
same destination node (which could have been a multi-cast address) that was
used in making the external data request originally, and release the external
request block. If there was a total answers block, release it also. Delist1
preserves all registers. Its single argument is the full list# in D0.

Data Server requests
A data server request is one which originates from another node on the

network. When a data request message is received that specifies the use of the
data server, it is supported by the system on behalf of the network requester.
The Server Task, which runs every cycle at about 40 msec into the cycle, scans
the chain of active data requests for data server requests, calls Collect to
retrieve the data (without waiting), and it queues the resulting “total
answers” to the network requesting node. A total answers memory block,
referenced by a field in the request block, carries the answer response to the
network.

ReqDataS
This entry point is used by the Network Task when it receives a data

server request. If the full list# (specified in the network request by the
requesting node) is the same as one found in the total answers block of a
currently-active data server request, then that request is cancelled. A new list#
is obtained via NewListN. Note that the requesting node’s list# is not used,
since we cannot guarantee that it would not conflict with a currently-active
LISTP entry. However, the original list# is retained for inclusion in the total
answers response to the requesting node.

ReqData
The call is converted into a ReqDataS-compatible call by appending an

ReqD Notes Oct 2, 1990 page 5
entry is cleared via SetListN. A new list# is obtained via NewListN, and is
recorded in the short set entry via SetListN.

ReqdCom
This code is common to both ReqData and ReqDataS. Arguments nLtypes

and nIdents are checked against reasonable ranges. The listypes are checked
for being ident-compatible.

The number of bytes needed for an external request block and for the main
request block is evaluated by scanning the idents for the number of idents
from each external node represented in the request. Memory is allocated both
for the request block and for an external request block, if needed, and the
blocks initialized.

The pointer-type routines are called for each listype to translate each local
ident into an internal pointer and each external ident into a reference to the
predictable part of the external node’s external answer buffer where the
answers will be placed when the answer fragment message is received from
that external node. The result of this “compilation” is an array of “internal
pointers” that are interpreted at data request fulfillment time (via Collect)
by read-type routines. This interpretation loop is optimized for speed, as data
request fulfillment may be done for a number of active requests at 15 Hz.

The “Age” and “Cntr” fields in the external answer pointers are initialized for
detection of tardy external nodes. The main set list# is established via
SetListP.

If the request was a data server request, a total answers block is allocated and
initialized for later queuing of the total answers to the original requester.

The new request is connected into the chain of active data requests via
InsChain, which places it adjacent to another active data request from the
same node, if there is any.

If there is an external request block, it is queued to the network via OUTPQX.

Note that ownership of each of the three memory blocks is assigned to
QMonitor Task via Assign, as QMonitor may likely be the one which may
have to release the memory when the request is cancelled. If the user calls
Delist to cancel a request, a check is made to see whether the external
memory block or the total answers memory block has been queued to the
network but not actually yet transmitted. In that case, a flag is set for
QMonitor to free the memory when the message has been transmitted.

